
ndcsv Documentation
Release 1.1.1.dev0+g593a676.d20220326

ndcsv Developers

2022-03-26

CONTENTS

1 Index 3
1.1 File format specifications . 3
1.2 Data loss . 7
1.3 Python API . 7
1.4 Installation . 8
1.5 Development Guidelines . 9
1.6 What’s New . 10

2 Credits 11

3 License 13

Index 15

i

ii

ndcsv Documentation, Release 1.1.1.dev0+g593a676.d20220326

NDCSV is a file format that allows storing N-dimensional labelled arrays into human-readable CSV files and read them
back without needing any configuration, load hints, or sidecar configuration files.

The fundamental concept is that, unlike pandas.DataFrame.to_csv() and pandas.read_csv(), reading and writ-
ing objects is fully automated and reversible. One does not need to specify how many rows and/or columns of header
are available - the file format is unambiguous and the library automatically does the right thing.

The format was designed around xarray, so it supports, out of the box:

• Arrays with any number of dimensions

• Labelled, named indices

• Non-index coordinates

CONTENTS 1

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html#pandas.DataFrame.to_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
http://xarray.pydata.org

ndcsv Documentation, Release 1.1.1.dev0+g593a676.d20220326

2 CONTENTS

CHAPTER

ONE

INDEX

1.1 File format specifications

1.1.1 CSV settings

NDCSV files are a strict subset of the CSV format and can be read and written with any CSV editor. They must respect
all default conventions of the Python csv module:

• Field separator is , (comma)

• Decimal separator is . (dot)

• Line separator can be either CRLF or LF

• Double quotes may be used to wrap commas and newlines in strings

• Numbers may be expressed in scientific format e.g. 1e-10

• Thousands separators are not supported

• Fancy Excel formatting is not supported

Unlike in csv, it is by design not possible to deviate from the above.

1.1.2 Dimensions representation

The NDCSV format can represent almost arbitrary N-dimensional hypercubes. The parent CSV format, however,
is restrained by the physics of computer screens and can only represent 2-dimensional arrays. To work around the
problem, NDCSV files with more than 2 dimensions are flattened to 1 or 2 dimensions using pandas.MultiIndex,
and automatically unstacked when they are loaded back.

This means that the same in-memory object can have multiple equivalent representations on disk. For example,
you can represent a 3-dimensional array in NDCSV as:

• a 1-dimensional array with a 3-levels MultiIndex on the rows

• a 2-dimensional array with a 2-levels MultiIndex on the rows and a simple index on the columns

• a 2-dimensional array with a simple index on the rows and a 2-levels MultiIndex on the columns

Hypercubes with higher dimensionality offer exponentially more permutations to choose from.

It is up to the user to decide which representation is the most compact and human readable. The write_csv() function
will automatically stack all dimensions beyond the first on the columns; if the user wants to stack dimensions on the
rows he’ll need to manually invoke xarray.DataArray.stack() beforehand.

3

https://docs.python.org/3/library/csv.html#module-csv
https://docs.python.org/3/library/csv.html#module-csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.MultiIndex.html#pandas.MultiIndex
https://xarray.pydata.org/en/stable/generated/xarray.DataArray.stack.html#xarray.DataArray.stack

ndcsv Documentation, Release 1.1.1.dev0+g593a676.d20220326

0-dimensional array

A scalar (a-dimensional array) can be represented as a flat number. The CSV file must have exactly one cell:

10

1-dimensional array without MultiIndex

An array with exactly one dimension must be represented as follows:

time
2017-12-31 10
2018-12-31 10
2019-12-31 100

The first row has exactly one cell, whereas all other rows have exactly 2 cells.

Pandas notes

If the index.name is null (where index.name is ‘time’ in the example above), then it will be set to dim_0 by default.
You cannot have unnamed dimensions in NDCSV.

1-dimensional array with MultiIndex

Arrays with 2 or more dimensions can be flattened into a 1-dimensional array:

currency time
USD 2017-12-31 10
USD 2018-12-31 10
GBP 2019-12-31 100

The first row has exactly 1 cell less than the other rows.

xarray notes

The name of a MultiIndex dimension (as opposed to its levels) is irreversibly lost when exporting to NDCSV.

2-dimensional array without MultiIndex

Arrays with exactly 2 dimensions can be represented flattened as in the above paragraph, or in their natural form as
defined below:

y y0 y1 y2 y3
x
x0 1 2 3 4
x1 5 6 7 8

Note: The second line of header is mandatory. This may feel unnatural for long-time Excel or Pandas users, but it is
the only way to

1. Define the name of both dimensions (which, unlike in pandas, are always mandatory)

4 Chapter 1. Index

ndcsv Documentation, Release 1.1.1.dev0+g593a676.d20220326

2. Unambiguously allow the read_csv() function to tell apart this use case from all others.

Pandas notes

If the index.name is null (where index.name is ‘x’ in the example above), then it will be set to dim_0. If columns.name
(where columns.name is ‘y’ in the example above), then it will be set to dim_1. You cannot have unnamed dimensions
in NDCSV.

2-dimensional array with MultiIndex on the rows

Arrays with 3 or more dimensions can be represented with all but the last dimension stacked on the rows, as defined
below:

z z0 z1
x y
x0 y0 1 2
x0 y1 3 4
x1 y0 5 6
x1 y1 7 8

If there are N stacked dimensions on the rows, cells 2 to N of the first row are blank. On row 2, cell N+2 onward are
blank.

2-dimensional array with MultiIndex on the columns

Arrays with 3 or more dimensions can be represented with all but the last dimension stacked on the columns, as defined
below:

y y0 y0 y1 y1
z z0 z1 z0 z1
x
x0 1 2 3 4
x1 5 6 7 8

If there are N stacked dimensions on the columns, then row N+1, cell 2 onward are blank.

2-dimensional array with MultiIndex on both rows and columns

Arrays with 4 or more dimensions can be represented with dimensions stacked on both rows and columns, as defined
below:

y y0 y0 y1 y1
z z0 z1 z0 z1
w x
w0 x0 1 2 3 4
w0 x1 5 6 7 8
w1 x0 1 2 3 4
w1 x1 5 6 7 8

1.1. File format specifications 5

ndcsv Documentation, Release 1.1.1.dev0+g593a676.d20220326

Cells 2 to N of the first row are blank; this means that the MultiIndex on the rows has N stacked dimensions. Row M,
cell N+1 is blank. This means there’s M-1 stacked dimensions on the columns.

1.1.3 Non-index coordinates

A non-index coordinate is an additional piece of information associated to an index coordinate. Non-index coordinates
must be represented like a MultiIndex (above), but their label must be formatted coord name (dim name).

Example:

country currency (country)
Germany EUR 10
France EUR 10
UK GBP 10

There must be a strict 1:N cardinality between a non-index coordinate and its index coordinate. The following is invalid:

uid name (uid)
1 John Doe 10
1 John Smith 20

If you need N:N cardinality, you should use a plain MultiIndex (or write the data in 2-dimensional format), both of
which allow for the cartesian product of all values.

1.1.4 Dimensions without coordinates

A dimension may not have an explicit coordinate as long as the dimension name can be inferred from non-index
coordinates. In this case, the index coordinate defaults to an incremental counter 0, 1, 2. . .

name (uid) age (uid)
John Doe 18 10
John Smith 25 20

1.1.5 Duplicate indices

Indices may be duplicated; however only unique indices can be unstacked automatically.

1.1.6 Data types

NDCSV inherits all automatic dtype recognition from pandas.read_csv(). This includes automatic recognition of
NaN values.

Unlike in pandas.read_csv(), the default settings cannot be changed by design, for the sake of reproducibility.

It is impossible to go beyond automated type recognition based on the text representation of the data itself; e.g. there
is no way to force an integer to be int32 instead of int64.

NDCSV implements additional treatment on top of pandas.read_csv():

• Any coord where all elements are T, F, Y, N, TRUE, FALSE, YES, NO (case insensitive) is converted to boolean

6 Chapter 1. Index

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv

ndcsv Documentation, Release 1.1.1.dev0+g593a676.d20220326

• Any non-numeric coord where all elements can be parsed with pandas.to_datetime() is converted to date-
time64. NDCSV prefers European convention DD/MM/YYYY to the American convention MM/DD/YYYY.
Note that this is unlike the default settings of pandas.to_datetime(), which instead prefer the American
format. It is strongly recommended to use ISO dates YYYY-MM-DD to prevent confusion.

Numerical IDs

Just like in pandas.read_csv(), numerical IDs starting with 0 are not converted to integers (and therefore lose the
0) as long as there’s at least one other non-numerical ID in the same coordinate.

Empty cells and NaNs

Empty cells, as per pandas default behaviour, are treated as NaN. It is not possible to have empty cells or NaNs in any
of the coordinates, as that would create ambiguity when reading back the files from disk.

1.2 Data loss

When writing xarray data, the following information is irreversibly lost:

• Name of the parent dimension of a MultiIndex (only the MultiIndex levels are retained)

• Scalar coordinates (not associated with a dimension)

• Array name

• Attributes

• Data types, unless they can be automatically inferred by pandas.read_csv(). or pandas.to_datetime().
Booleans receive special treatment.

• dask chunks

1.3 Python API

ndcsv.write_csv(array: xarray.DataArray | pandas.Series | pandas.DataFrame, path_or_buf: str | IO | None =
None)

Write an n-dimensional array to an NDCSV file.

Any number of dimensions are supported. If the array has more than two dimensions, all dimensions beyond the
first are automatically stacked together on the columns of the CSV file; if you want to stack dimensions on the
rows you’ll need to manually invoke xarray.DataArray.stack() beforehand.

This function is conceptually similar to pandas.DataFrame.to_csv(), except that none of the many configu-
ration settings is made available to the end user, in order to ensure consistency in the output file.

Parameters

• array – One of:

– xarray.DataArray

– pandas.Series

– pandas.DataFrame

• path_or_buf – One of:

1.2. Data loss 7

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime
https://dask.org
https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://xarray.pydata.org/en/stable/generated/xarray.DataArray.stack.html#xarray.DataArray.stack
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html#pandas.DataFrame.to_csv
https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

ndcsv Documentation, Release 1.1.1.dev0+g593a676.d20220326

– .csv file path

– .csv.gz / .csv.bz2 / .csv.xz file path (the compression algorithm is inferred automatically)

– file-like object open for writing

– None (the result is returned as a string)

ndcsv.read_csv(path_or_buf: str | TextIO, unstack: bool = True)→ DataArray
Parse an NDCSV file into a xarray.DataArray.

This function is conceptually similar to pandas.read_csv(), except that it only works for files that are strictly
formatted according to File format specifications and, by design, does not offer any of the many config switches
available in pandas.read_csv().

Parameters

• path_or_buf – One of:

– .csv file path

– .csv.gz / .csv.bz2 / .csv.xz file path (the compression algorithm is inferred automatically)

– file-like object open for reading. It must support rewinding through seek(0).

• unstack (bool) – Set to True (the default) to automatically unstack any and all stacked
dimensions in the output xarray, using first-seen order. Note that this differs from xarray.
DataArray.unstack(), which may occasionally use alphabetical order instead. All indices
must be unique for the unstack to succeed. Non-index coords can be duplicated.

Set to False to return the stacked dimensions as they appear in the CSV file.

Returns xarray.DataArray

1.4 Installation

1.4.1 Required dependencies

• Python 3.8 or later

• xarray

• pshell

1.4.2 Testing

To run the test suite after installing ndcsv, first install (via pypi or conda)

• py.test: Simple unit testing library

and run pytest ndcsv.

8 Chapter 1. Index

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://docs.python.org/3/library/functions.html#bool
https://xarray.pydata.org/en/stable/generated/xarray.DataArray.unstack.html#xarray.DataArray.unstack
https://xarray.pydata.org/en/stable/generated/xarray.DataArray.unstack.html#xarray.DataArray.unstack
https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray
http://xarray.pydata.org/
https://pshell.readthedocs.io/
https://pytest.org

ndcsv Documentation, Release 1.1.1.dev0+g593a676.d20220326

1.5 Development Guidelines

1.5.1 Install

1. Clone this repository with git:

git clone git@github.com:crusaderky/ndcsv.git
cd ndcsv

2. Install anaconda or miniconda (OS-dependent)

3. conda env create -n ndcsv-3.10 --file ci/requirements.yml python=3.10
conda activate ndcsv-3.10

To keep a fork in sync with the upstream source:

cd ndcsv
git remote add upstream git@github.com:crusaderky/ndcsv.git
git remote -v
git fetch -a upstream
git checkout main
git pull upstream main
git push origin main

1.5.2 Test

Test using py.test:

py.test ndcsv

1.5.3 Code Formatting

ndcsv uses several code linters (flake8, black, isort, pyupgrade, mypy), which are enforced by CI. Developers should
run them locally before they submit a PR, through the single command

pre-commit run --all-files

This makes sure that linter versions and options are aligned for all developers.

Optionally, you may wish to setup the pre-commit hooks to run automatically when you make a git commit. This can
be done by running:

pre-commit install

from the root of the ndcsv repository. Now the code linters will be run each time you commit changes. You can skip
these checks with git commit --no-verify or with the short version git commit -n.

1.5. Development Guidelines 9

https://pre-commit.com/

ndcsv Documentation, Release 1.1.1.dev0+g593a676.d20220326

1.6 What’s New

1.6.1 v1.1.0 (2022-03-26)

• Bumped minimum version of dependencies:

Dependency 1.0.0 1.1.0
python 3.6 3.8
numpy 1.13 1.14
pandas 0.21 0.24
xarray 0.10.9 0.14

• Added support for Python 3.8, 3.9, and 3.10

• Added support for recent versions of numpy, pandas, and xarray

• Added type annotations

• Lint with isort, black, mypy, pyupgrade. All linters are wrapped by pre-commit.

• Migrated CI to GitHub actions

• Developer documentation

• Fixed unit tests on Windows vs. pandas-0.24 Jacob Lin

• Fixed noise when reading floats; e.g. “0.9988” was being read as 0.9998799999999999 Jacob Lin

1.6.2 v1.0.0 (2019-01-02)

• Open sourced and refactored from landg.idealcsv. Rewritten most of the code, unit tests, and documentation.
Fixed many bugs. Guido Imperiale

10 Chapter 1. Index

https://github.com/jcclin
https://github.com/jcclin
https://github.com/crusaderky

CHAPTER

TWO

CREDITS

ndcsv was initially developed internally as landg.ndcsv by Legal & General. It was open-sourced in 2018.

11

http://www.landg.com

ndcsv Documentation, Release 1.1.1.dev0+g593a676.d20220326

12 Chapter 2. Credits

CHAPTER

THREE

LICENSE

The ndcsv Python module is available under the open source Apache License. The ndcsv format is patent-free and
in the public domain. Anybody can write an alternative implementation; compatibility with the Python module is not
enforced by law, but strongly encouraged.

13

http://www.apache.org/licenses/LICENSE-2.0.html

ndcsv Documentation, Release 1.1.1.dev0+g593a676.d20220326

14 Chapter 3. License

INDEX

R
read_csv() (in module ndcsv), 8

W
write_csv() (in module ndcsv), 7

15

	Index
	File format specifications
	CSV settings
	Dimensions representation
	0-dimensional array
	1-dimensional array without MultiIndex
	1-dimensional array with MultiIndex
	2-dimensional array without MultiIndex
	2-dimensional array with MultiIndex on the rows
	2-dimensional array with MultiIndex on the columns
	2-dimensional array with MultiIndex on both rows and columns

	Non-index coordinates
	Dimensions without coordinates
	Duplicate indices
	Data types
	Numerical IDs
	Empty cells and NaNs

	Data loss
	Python API
	Installation
	Required dependencies
	Testing

	Development Guidelines
	Install
	Test
	Code Formatting

	What’s New
	v1.1.0 (2022-03-26)
	v1.0.0 (2019-01-02)

	Credits
	License
	Index

